Course
ECE 43700 - Computer Design and Prototyping

Type of Course
Required for CmpE Program, Elective for EE Program

Catalog Description
An introduction to computer organization and design, including instruction set selection, arithmetic logic unit design, datapath design, control strategies, pipelining, memory hierarchy, and I/O interface design.

Credits
4

Contact Hours
Class: 3; Lab: 3

Prerequisite Courses
ECE 35800, ECE 36200

Prerequisites by Topics
Familiar with Hardware Description Language (VHDL or Verilog) and microprocessor system organization

Textbook

Course Objectives
Computer design is the science and art of selecting and interconnecting hardware components to build a computer that meets functional, performance, and cost goals. In this course, students will learn to design a uniprocessor computer system, including processor datapath, processor control, memory systems, and I/O. The course provides a thorough and detailed treatment of basic computer arithmetic algorithms, multi-cycle implementations of modern computer instruction sets, pipelined CPU designs, design of cache hierarchy and virtual memory, and fundamentals of computer system I/O. The course also includes evaluation and analysis of processor and memory performance.

Course Outcomes
Students who successfully complete this course will have demonstrated:
1. An understanding of basic computer arithmetic algorithms. (a [1], c [2], e [4])
2. An ability to understand and implement single-cycle implementations of a computer instruction set. (a [1], c [2], e [4])
3. An ability to understand a pipelined CPU. (a [1], c [2], e [4])
4. An ability to analyze and evaluate CPU performance. (a [1], b [2], e [3])

5. An experience with the design, simulation, and documentation of a single-cycle CPU using modern CAD tools. (a [1], b [2], c [3], e [6], i [8], k [9])

Lecture Topics
1. Computer Abstractions and Technology
2. Instructions: Language of the Computer
3. Arithmetic for Computer
4. The Processor: Datapath and Control
5. Memory Hierarchy
6. Storage and Other I/O topics
7. Multicores, Multiprocessors, and Clusters

Computer Usage
High

Laboratory Experience
High

Design Experience
High

Coordinator
Guoping Wang, Ph.D.

Date
31/3/11