FORT WAYNE SENATE AGENDA
MONDAY
NOVEMBER 10, 2008
12:00 P.M., KT G46

1. Call to order
2. Approval of the minutes of October 20, 2008
3. Acceptance of the agenda – B. Abbott
4. Reports of the Speakers of the Faculties
 a. Purdue University – N. Younis
 b. Indiana University – M. Nusbaumer
5. Report of the Presiding Officer – S. Davis
6. Committee reports requiring action
 a. University Resources Policy Committee (SD 08-3) – M. Walsh
 b. Executive Committee (SD 08-4) – B. Abbott
7. New business
8. Committee reports “for information only”
 a. Executive Committee (Senate Reference No. 08-5) – B. Abbott
 b. Graduate Subcommittee (Senate Reference No. 08-6) – J. Garrison
9. The general good and welfare of the University
10. Adjournment*

 *The meeting will adjourn or recess by 1:15 p.m.

Approving
S. Davis
J. Grant
M. Nusbaumer
A. Ushenko
N. Younis

Absent
B. Abbott
K. Pollock

Attachments:
“Library Collection Development Policy (supersedes SD 97-6)” (SD 08-3)
“Approval of replacement member of the Graduate Subcommittee” (SD 08-4)
“Items under consideration by Senate Committees and Subcommittees” (SR No. 08-5)
“Proposal for Graduate Certificate in Systems Engineering” (SR No. 08-6)
TO: Fort Wayne Senate

FROM: University Resources Policy Committee
Matthew Walsh, Chair

SUBJECT: Library Collection Development Policy (supersedes SD 97-6)

DATE: October 22nd, 2008

DISPOSITION: To the presiding officer for implementation.

WHEREAS the current Library Collection Development Policy (SD 97-6) was laid down eleven years ago, prior to the broad availability of electronic resources; and

WHEREAS the current policy quotes extensively from other sources, sources which are now easily accessible directly;

BE IT RESOLVED that the Senate approve Senate Document SD 08-3.

Approving Not Approving Not Voting Absent
Bruce Abbott Judith Garrison Jack Dahl Walter Branson
James Burg Christine Erickson Matthew Walsh Jonathan Dalby
Iskandar Hack Peter Iadicola Peter Dragnev H. Jay Harris
Christine Erickson Peter Iadicola Iskandar Hack Ashley McArdle
Tammy Mattern William McKinney Audrey Ushenko
Walter E. Helmke Library Collection Development Policy
Approved by the Library Subcommittee, February 28th 2008
Approved with amendments by URPC, October 20th 2008

I. Purposes and Goals of Collection Development

Collection development refers to the process of building and maintaining the library's collection. The collection development policy establishes the principles used by Walter E. Helmke Library in the selection, acquisition, evaluation, and maintenance of information resources in electronic, print and non-print formats. The collection policy reflects the philosophies stated in the IPFW mission [http://www.ipfw.edu/about/excellence/mission.shtml] and the Walter E. Helmke Library mission [http://www.lib.ipfw.edu/668.0.html] and communicates the guiding principles for the collection to faculty, students, staff, and other interested persons while providing guidance to those responsible for developing the collection.

The primary goal of Helmke Library's collection development efforts is to build a collection that supports the needs of the undergraduate and graduate programs at IPFW. Because the library also recognizes its responsibility to respond to the research needs of the faculty and provide access to specialized information sources, the library participates in and encourages cooperative collection development and resource sharing agreements with other libraries.

II. Responsibility for Library Collection Development

A librarian serves as a liaison with each academic department and other substantive collection areas and is responsible for developing the library collection in each assigned area. Using qualitative and/or quantitative assessment measures, librarians are responsible for monitoring the strengths and weaknesses of the collections supporting academic programs in their liaison areas and for setting priorities for these collections. It is expected that faculty will work with the subject librarian assigned to their discipline to recommend appropriate library materials and that academic departments will involve subject librarians in collection analysis and development for proposed new programs and for departmental program reviews. The collection development librarian monitors the development and maintenance of the entire library collection in consultation with the subject librarians. Ultimate responsibility for the library's collection rests with the library dean.

III. Library Materials Funds

The library's materials budget is used to purchase serials and books in print or electronic format and audio, video, or other non-print materials. The university allocation is supplemented by funds from gifts and the library's endowment.

IV. Selection Policies

Selection of materials is a continuous process affected by the changing curriculum as well as the availability of new materials. As with all library purchases, the primary criteria for selection is the extent to which the material is relevant to the curriculum, improves the overall library collection, and enhances access to information. The general policy for selection applies equally to all types of
materials being considered for the library’s collection.

A. General Policies for Selecting Materials

1. Standards and Ethical and Legal Principles

 a. Standards
 Helmke Library supports the statements on resources adopted by the American Library Association’s Association of College and Research Libraries and articulated in the “Standards for Libraries in Higher Education” [http://www.ala.org/ala/acrl/acrlstandards/standardslibraries.cfm]

 b. Intellectual Freedom and Censorship
 Helmke Library recognizes that free access to ideas and full freedom of expression are fundamental to the educational process. Accordingly, the library purchases materials that represent a wide variety of viewpoints. To this end, the library subscribes to and complies with the Intellectual Freedom Statements and Policies of the American Library Association, including but not limited to the American Library Association Library Bill of Rights. [http://www.ala.org/ala/oif/statementspols/statementsif/librarybillrights.htm]

 The library does not add or withdraw, at the request of any individual or group, material which has been chosen or excluded on the basis of stated selection criteria. An individual or group questioning the appropriateness of material within the collection may articulate their concerns in writing to the library dean.

 c. Confidentiality

 d. Copyright

2. Guidelines for Selection of All Materials

 a. Relevance to the curriculum and usefulness to the IPFW academic audience

 b. Timeliness and lasting value of content and format

 c. Reputation of the author, issuing body, and/or publisher

 d. Presentation and usability (style, clarity, intuitiveness, and organization)

 e. Aesthetic considerations: (1) literary, artistic, or social value; (2) appeal to the imagination, senses, or intellect
f. Special features: (1) accurate, usable index; (2) bibliography; (3) footnotes; (4) pictorial representations

g. Physical and technical quality: (1) paper, typography, and binding; (2) stability; (3) compatibility with other library systems

h. Suitability of content to format

i. Strength of present holdings on the same or similar subject

j. Frequency of document delivery requests for material on the same or similar subject

k. Price/relative cost of material in relation to the budget and other available or needed material

l. Inclusion in subject specific and standard library reviewing sources

m. Holdings of other libraries in appropriate resource-sharing networks

n. Where materials have a geographical focus, materials relating to Fort Wayne, Allen County, northeastern Indiana and the Midwest are preferred.

o. Current publications have priority over retrospective buying

3. Considerations for Selection of Specific Types and Formats of Materials

a. Works of fiction are selected based on choosing established literary works and new works of promise in the literary field, especially those works that support literature course offerings.

b. Foreign-language materials are selected to support the curriculum in literature and language studies. Basic language tools such as foreign language dictionaries and phrase books are collected for general reference needs.

c. Electronic resources are the preferred format for many library resources. These products include databases, abstracts and indexes, data files, journals, reference sources, image collections, and e-books.

d. Maps are selected from the U.S. government through its depository library program with priority given to maps of Indiana and the Midwest.

e. Duplicates are not selected unless warranted by heavy usage of copies already held by the library.

f. Gifts are added to the collection based on the same selection criteria used for purchased materials.

g. Textbooks and manuals are not purchased or added to the collection unless they have earned a reputation as classics in their fields or are the only or best sources of information on a particular topic.

h. The library does not select materials in proprietary, nonstandard or obsolete formats.
I. The library does not collect materials such as article reprints or preprints, equipment manuals, costumes, educational toys and games, medical instruments, models, specimens, laboratory equipment, or materials meant for consumption.

V. Specialized Collections

A. Archives

The purpose of the University Archives is to collect, organize, and preserve the historic documents of IPFW. The library has maintained a selective archive since 1964 and in December 1981 was designated as the official University Archives for IPFW. In 2007, the library initiated a digitization project that includes digitizing some archives materials. University Archives does not include personnel or student records and rules of confidentiality are observed for sensitive materials.

B. Children's Literature

All books, fiction and nonfiction, with an intended audience of preschool through young adult are housed in a separate location and designated as the Children's Literature Collection. The purpose of the collection is to provide a sample of books written for children for use by students in education and other careers working with children. Special emphasis is placed on acquiring award-winning and special-merit books. Caldecott and Newbery award and honor winners are collected along with other notable children’s books.

C. IPFW Faculty Publications

Helmke Library maintains a collection of faculty-authored monographs.

D. Reference

The reference collection supports the research needs of IPFW students, faculty and staff. It contains such materials as abstracts and indexes, encyclopedias, dictionaries, atlases, directories, bibliographies, statistical compilations, and handbooks. The reference collection primarily supports IPFW academic programs. Reference works that provide basic bibliographic access to or an overview of other academic disciplines are also selected.

E. Serials

Serials are issued in print, microform, and electronic formats. Preference is given to electronic format, although all formats are considered in the library's purchase and/or access decisions. Because serials require a continuing financial and maintenance commitment, Helmke Library has established, with the approval of the Senate Library Subcommittee, a serials review procedure for cancellations and additions of serials subscriptions and review of appropriate media formats.

1. Criteria for Selection of Serials
 a. Relevance to the curriculum and usefulness to the IPFW academic audience
 b. Cost of ownership compared to cost of access and availability of the material through
document delivery services; factors to consider include price, cost of storage, delivery time, and demand

c. Strength of present holdings on the same or similar subject

d. Full-text availability through electronic means including the consideration of an embargo imposed by the publisher

e. Professional reputation

f. Indexing and abstracting in sources accessible to library users

F. Government Documents

1. Local

Helmke Library collects and maintains an archive of Fort Wayne area documents. Local documents of an archival or historical nature are generally not removed from the collection. The library has been a depository for publications distributed by the City of Fort Wayne since 1987 (Special Ordinance No.S-100-87).

2. State

The library collects and maintains documents from the state of Indiana. State documents of an archival or historical nature are generally not removed from the collection unless they are freely available online and an archival copy is guaranteed in the state of Indiana.

3. Federal Documents

The primary purpose of the Federal Depository Library Program (FDLP) is to provide free, unimpeded access to government information and information services for both the primary users of the parent institution and the wider constituency of the congressional district or the geographical area that it serves.

Helmke Library participates in resource sharing and cooperative collection programs for federal documents. Within the Indiana University Library system, the federal depository libraries collectively provide access to 100% of the items currently available for selection through the FDLP. In addition, Helmke Library is a collaborative partner in the Indiana Light Archive for Federal Documents which seeks to establish an archive collection of all federal documents, 1789 to the present, accessible physically and/or electronically to all citizens of Indiana.

4. Foreign National and International Documents

Helmke Library is not a depository for foreign national government documents or the
documents of other international government organizations, such as the United Nations. However, the library does select core documents when they meet the selection criteria enumerated within this policy.

VI. Collection Maintenance

A. Location of Materials

Information resources purchased with library funds and gifts to the library become part of the library collection and the shelving location of these resources is determined by the librarians. Access to electronic information is in compliance with licensing agreements.

B. De-selection

De-selection of library materials, the process of removing items from the collection, is essential for the maintenance of an active, academically useful library collection. De-selection provides quality control for the collection by elimination of outdated, inaccurate, and worn-out materials. Librarians are responsible for conducting an ongoing de-selection effort in consultation with faculty in their areas of collection responsibility and for maintaining the quality of the collection. The same guidelines used for selection of library materials provide the underlying principles for de-selection.

C. Conservation, Preservation, and Replacement

Library materials are expensive to purchase, process, and house. Helmke Library acknowledges the necessity of preserving library materials and supports the American Library Association’s “Preservation Policy.”
[http://www.ala.org/ContentManagement/ContentDisplay.cfm?ContentID=25135]
The collection development librarian in consultation with subject librarians and other library personnel determines what action should be taken with damaged and worn materials. The library maintains a disaster plan that designates procedures for the initiation of action should an emergency arise involving the library’s collection.

VII. Access/Ownership Statement

Helmke Library's goal is to maintain a cost-effective combination of owning traditional collections and providing access to other materials, to best support the needs of the IPFW community. Integrating access as a part of the collection development policy offers advantages to the library as an information provider. The developments in electronic information systems have made it possible for libraries to collect and organize, and provide access to resources through cooperative collection development and resource sharing. When it is determined that access on demand is more economically feasible in terms of storage, projected use, and cost, this option enhances the library's ability to expand the information base available to its primary users.

VIII. Resource Sharing and Cooperative Collection Development

Helmke Library is committed to resource sharing and cooperative collection development. Cooperative collection development and resource sharing programs assure the broadest possible access to information for the international community of scholars.

Resource sharing encourages exchange of materials among participating libraries for the mutual benefit of all parties. Helmke Library is an active participant in local, state, regional, and
international resource-sharing networks. Likewise, the library works with its resource-sharing partners to establish cooperative collection development programs that will benefit all libraries involved.

IX. Collection Development Policy Evaluation

The Collection Development Policy is reviewed periodically by the Helmke Library Collection Development Group. Any substantive changes in policy are submitted to the Library Operations Committee and the IPFW Senate Library Subcommittee for approval.

Developed and approved by the Library Council, February 12, 2008: Tiff Adkins, Marla Baden, Denise Buhr, Margit Codispoti, Judith Garrison, Pamela Sandstrom, Stephanie Schulte, Susan Skekloff, Cheryl Truesdell, Judith Violette
MEMORANDUM

TO: Fort Wayne Senate

FROM: Bruce Abbott, Chair
 Executive Committee

DATE: 27 October 2008

SUBJ: Approval of replacement member of the Graduate Subcommittee

DISPOSITION: To the Presiding Officer for implementation

WHEREAS, The Bylaws of the Senate provide (5.1.2.) that “… Senate Committees … shall
have the power to fill Committee vacancies for the remainder of an academic year, subject to
Senate approval at its next regular meeting”; and

WHEREAS, There is a vacancy on the Graduate Subcommittee; and

WHEREAS, The Graduate Subcommittee has appointed Susan Ahrens as the replacement
member for the remainder of the 2008-09 academic year;

BE IT RESOLVED, That the Senate approve this appointment.

Approving Not Approving Absent
S. Davis B. Abbott
J. Grant K. Pollock
M. Nusbaumer
A. Ushenko
N. Younis
The Executive Committee has asked Senate committee and subcommittee chairs to report items under discussion in the various committees. The following is a compilation of what was submitted.

Educational Policy Committee
Jonathan Tankel, Co-chair and Glenda Moss, Co-chair
1. Discussed confusion some faculty and students have about newly implemented Plus-Minus grades. Memo of clarification will be prepared for distribution under the authority of both the Educational Policy Committee and Office of Academic Affairs.

Subcommittees of the Educational Policy Committee:

Calendar Subcommittee
David Lindquist, Chair

Continuing Education Advisory Subcommittee
Iskandar Hack, Chair
1. Nothing at this time.

Curriculum Review Subcommittee
Ann Livschiz, Co-chair and Susan Skekloff, Co-chair
1. Nothing at this time.

Developmental Studies Subcommittee
Karol Dehr, Co-chair and Dianna Zook, Co-chair
1. No report received.

Distance Education Subcommittee
Iskandar Hack, Chair
1. Nothing at this time.

General Education Subcommittee
Mark Masters, Chair
1. We have just completed a preliminary rubric to help guide the approval process of general education courses.
2. We have three course proposals pending before the committee.
3. Once these courses have been considered, the committee will return to writing rubrics for assessment of the general education program through the Area VI artifacts collected last year.
Grade Appeals Subcommittee
Janet Papiernik, Chair
1. Nothing at this time.

Graduate Subcommittee
Judith Garrison, Chair
1. Considered Graduate Certificate in Addictions Counseling.
2. Filled vacancy on subcommittee.

Honors Program Council
Duston Moore, Chair
1. Nothing at this time.

International Services Advisory Subcommittee
Susan Skekloff, Chair
1. No report received.

Faculty Affairs Committee
Kimberly McDonald, Chair
2. Generated a list of questions regarding salary increments to be discussed at the November Senate meeting.
3. Will review all senate P&T documents to check for consistency and possible consolidation.

Subcommittee of the Faculty Affairs Committee:

Professional Development Subcommittee
Ronald Friedman, Chair
1. Reviewing applications for 2008 IPFW Summer Faculty Research Grants.
2. Reviewing sabbatical leave applications.

Indiana University Committee on Institutional Affairs
Michael Nusbaumer, Chair
1. Nothing at this time.

Nominations and Elections Committee
Matthew Walsh, Chair
1. Conducting election of ombudscommittee representatives.

Purdue University Committee on Institutional Affairs
Nash Younis, Chair
1. Nothing at this time.
Student Affairs Committee
Jay Jackson, Chair
1. The committee has discussed, with George McClellan, the student affairs mission statement, the six degrees of connections, and the personal counseling program. We will continue to discuss these issues and others that are brought to our attention.

Subcommittee of the Student Affairs Committee:

Athletics, Subcommittee on
Robert Vandell, Chair
1. We will be looking at the school's academic standards for eligibility (since they are higher than the NCAA's at 2 points in a student's career)

University Resources Policy Committee
Matthew Walsh, Chair
1. Considered revision of Library Collection Development Policy.

Subcommittees of the University Resources Policy Committee:

Academic Computing and Information Technology Advisory Subcommittee
1. No report received.

Budgetary Affairs Subcommittee
Brian Fife, Chair
1. Working on biennial report which will be issued to the Senate in the Spring 2009 semester.

Library Subcommittee
Adam Coffman, Chair
1. Reviewed Library Collection Development Policy.
3. Reviewed letter from the Subcommittee to the IPFW administration regarding Library funding (work in progress).
To: IPFW Senate
From: Judith Garrison, Graduate Subcommittee
Date: October 29, 2008
Re: Proposal for Graduate Certificate in Systems Engineering

Graduate Subcommittee supports the proposal for Graduate Certificate in Systems Engineering, and finds that the proposal requires no Senate review.

<table>
<thead>
<tr>
<th>Approving</th>
<th>Not Approving</th>
<th>Absent</th>
</tr>
</thead>
<tbody>
<tr>
<td>S. Carr</td>
<td></td>
<td>P. Bingi</td>
</tr>
<tr>
<td>T. Downy</td>
<td></td>
<td>B. Fife</td>
</tr>
<tr>
<td>J. Garrison</td>
<td></td>
<td>G. Hickey</td>
</tr>
<tr>
<td>A. Livschiz</td>
<td></td>
<td>L. Hite</td>
</tr>
<tr>
<td>Y. Zubovic</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
IPFW
Request for a New Credit Certificate Program

Campus: Fort Wayne

Proposed Title of Certificate Program: Graduate Certificate in Systems Engineering

Projected Date of Implementation: Fall 2008

I. TYPE OF CERTIFICATE: (check one)

☐ UNDERGRADUATE CERTIFICATES – These programs generally require 12-29 credits of undergraduate-level academic work.

☐ GRADUATE CERTIFICATES – These programs generally require 12-29 credits of graduate-level academic work or undergraduate academic work carrying graduate credit.

☐ POST-BACCALAUREATE CERTIFICATES – These programs generally require 12-29 credits of undergraduate-level academic work, although students enrolling in these programs must have completed their baccalaureate degrees.

II. Why is this certificate needed?

Systems engineering is a structured approach to developing technical solutions that satisfy customer needs. Unlike traditional forms of engineering (i.e. electrical, mechanical, etc.) systems engineering does not focus on a specific class of products or technologies; rather it focuses on processes used to design, develop, verify and validate new products and systems.

Systems engineering “best practices” reduce development budgets and schedules, enhance product quality and ensure that products will meet customer needs. In other words, good systems engineering will improve a company’s bottom-line. With these benefits, it is not surprising that many companies are investing in their systems engineering capabilities. In fact, local industry has established a distinguished systems engineering faculty position at IPFW to increase their access to needed educational training and course work. This industry-university partnership has also led to the systems engineering focus in the recently-approved IPFW Master of Science in Engineering (M.S.E.) program. The required graduate-level course work for the systems engineering certificate is designed to teach a robust approach to product development from concept definition to the development of the first production article. Students enrolled in these courses will learn best practices, gain familiarity with industry and government standards and develop a toolbox of techniques to guide and manage their product development efforts.
Local interest in the program is high. In spring 2006 and fall 2007, the department offered a course equivalent to SE510 Systems Engineering. The spring 2006 was given by a consultant through IPFW Continuing Education and attracted thirty students; this semester (i.e., fall 2007) it is being offered by an engineering professor and has an enrollment of nineteen students. The enrollment numbers are impressive considering that the M.S.E. program has not admitted its first class. (The first class will be admitted in spring 2008.) Thus, the majority of the students were admitted with temporary, post-baccalaureate status and they were not eligible for university-based financial aid.

During the development of the M.S.E. proposal, the Department of Engineering surveyed local employers to define program options and course offerings. In addition to considerable interest in the Master of Science in Engineering, there was interest in a systems engineering graduate certificate. The certificate program would address the needs of working engineers that already possess a master’s degree and students that either do not have the time or financial resources to commit to the M.S.E. program.

III. List the major topics and curriculum of the certificate.

The Graduate Certificate in Systems Engineering is based on the core courses for the systems engineering area of specialization within the IPFW Master of Science in Engineering (M.S.E.) program. The courses are designed to provide a broad background in systems engineering techniques and practices including:

- Systems engineering processes and standards
- The stages of both the project and product lifecycles
- A process for scope definition
- Definition, allocation, derivation and management of requirements and specifications
- Techniques for performing functional analysis and allocation
- A framework for constructing and evaluating system trades
- Techniques for design synthesis
- Definition of functional and physical architectures
- Methods for system analysis and control
- Importance of managing the system configuration
- Specialty engineering (e.g., maintainability, reliability, EMI/EMC, manufacturability, etc.)
- System verification and validation
- Planning project technical activities
- Management and control of project development
- Project cost estimation, cost control (i.e., earned value) and cost management
- Risk management
- Technical management

The detailed syllabi are appended to this proposal.
Completion Requirements

As required by the College of Engineering, Technology and Computer Science in accordance with the requirements of the Purdue University Graduate School:

1. The total number of credit hours required is 12.
2. All courses must be taken for a letter grade.
3. The curriculum for the 12-credit hour certificate:

<table>
<thead>
<tr>
<th>Course</th>
<th>Course Name</th>
<th>Credit</th>
</tr>
</thead>
<tbody>
<tr>
<td>SE 510</td>
<td>Systems Engineering</td>
<td>3</td>
</tr>
<tr>
<td>SE 520</td>
<td>Engineering Economics</td>
<td>3</td>
</tr>
<tr>
<td>SE 530</td>
<td>Engineering Management</td>
<td>3</td>
</tr>
<tr>
<td>SE 540</td>
<td>System Architecture</td>
<td>3</td>
</tr>
<tr>
<td>Total</td>
<td>12</td>
<td></td>
</tr>
</tbody>
</table>

4. GPA requirements: Each SE course to be applied toward the certificate must be completed with a grade of "B" or better.

5. No credits from undergraduate-level courses may be used toward the certificate.

6. Some students will be taking only one course at a time; others may need to sit out for a semester, so the maximum time allowed for completion of this 12-hour certificate is three years, unless waived by the Department of Engineering.

7. Students already enrolled in the M.S.E. program are not eligible for the certificate. Exceptions will be considered if a student enrolled for the M.S.E. must leave that program prematurely without completing the full curriculum. If the requirements for the certificate have been fulfilled, the student may petition the Department of Engineering Graduate Committee to request the certificate.

8. Students who initially enroll in the certificate program may apply for the M.S.E. near completion of the certificate requirements or after the certificate has been granted. Courses completed with a grade of B or better would be applied for credit toward the master's degree up to a maximum of 12 hours.

9. Students may take a maximum of six credit hours prior to admission to the certificate program that may be counted toward completion of the certificate. (Students can receive additional credit if the courses were taken prior to approval of the certificate program.)

10. If approved by the Department of Engineering Graduate Committee, a maximum of three graduate-level transfer credits may be applied to the requirements for the certificate.
IV. Admission Requirements

Admission to the certificate program requires that students meet the requirements of the Purdue University Graduate School.

1. IPFW Engineering Graduate School Admission Requirements
 a. Bachelors degree in an engineering discipline
 b. Graduates with Bachelor of Science in the physical sciences, computer science, mathematics or technology may also be considered for admission.

2. An undergraduate cumulative grade point average of 3.0 on a 4.0 grading scale or equivalent

3. Mastery of the English language as evidenced by
 a. TOEFL for Non-Native English Speakers:
 Minimum Paper-Based Test (PBT) Score Required: 550
 Minimum Computer-Based Test (CBT) Score Required: 213
 Minimum Internet-Based Test (IBT) Overall Score Required: 77
 With the following minimum section requirements:
 Reading: 19
 Listening: 14
 Speaking: 18
 Writing: 18
 or
 b. IELTS (Academic Module):
 An alternative to the TOEFL, band scores of 6.5 or higher will be accepted

V. List the major student outcomes (or set of performance based standards) for the proposed certificate.

To summarize the outcomes listed in the appended syllabi, students who complete the required courses should be able to demonstrate the following knowledge:

a. A robust approach to the design, development, verification and validation of interdisciplinary products or systems.

b. Techniques to ensure that their project teams will work to a single, integrated set of requirements and systems engineering processes.

c. Methods for developing products within customer cost and schedule constraints.

d. Practices for dealing with increased product complexity, shortened time-to-market, technology obsolescence, commercial technology insertion, system development and verification of software and management of systems-of-systems integration.
VI. Explain how student learning outcomes will be assessed (student portfolios, graduate follow up, employer survey, standardized test, etc.) and describe the structure/process for reviewing assessment findings for the purpose of ensuring continuous improvement of the certificate.

To summarize the grading strategies outlined in the appended syllabi, learning outcomes will be assessed through homework, exams and projects. The set of learning outcomes for the certificate program will be assessed though student evaluations, graduate follow-up surveys and review by industry. The resulting feedback will be used to revise the curriculum as appropriate ensuring the continued relevance of the program. In addition, the aggregate data will be reviewed annually by the program faculty and industrial advisory committee.

VII. Describe student population to be served.

The systems engineering graduate certificate is open to candidates who meet the admissions requirements, but it is most likely to serve:

- Those with advanced degrees in related technological or scientific disciplines or students currently enrolled in related technological or scientific graduate programs seeking to augment their studies in the theory and practice of systems engineering.
- Working engineers and technologists with bachelor’s degrees who want training in systems engineering, but are not prepared to commit to a master’s degree program

VIII. How does this certificate complement the campus or departmental mission?

IPFW and the Department of Engineering are committed not only to contributing to the economic well-being of Northeast Indiana, but also to preparing students to be active and responsible members of a global society and workplace. Increasingly that means post-baccalaureate study that includes enhanced understanding of the context of their professional engineering activities. This program fulfills this mission and scope in the following ways:

- It focuses on engineering knowledge and skills needed in local industry that are not currently available elsewhere in Northeast Indiana.
- It allows students to begin graduate level study with a specific goal without requiring the commitment of time and financial resources necessary to pursue master’s level study. Yet it provides the option to continue for a master’s and includes much of the foundational coursework required for M.S.E.
IX. Describe any relationship to existing programs on the campus or within the university.

Currently, IPFW has a limited number of graduate level certificate programs, although others are in the approval process. Those already approved address specialized fields like organizational leadership and supervision, applied statistics, English education, and nursing administration. The proposed graduate certificate emphasizes understanding and applying an end-to-end systems approach to scoping, designing, building, integrating, verifying and validating complex and interdisciplinary products using a framework which is consistent with government and industry standards. It is designed for students who have completed their bachelor’s degree and are seeking additional education and graduate students from other fields of study. The courses in the graduate certificate are part of the core of the systems engineering focus of the M.S.E. program. While the certificate can stand alone, coursework taken under this certificate designation can be applied directly to the M.S.E.

This certificate supports Northeast Indiana workforce development needs. Industrial support for systems engineering is evident in the local support for this program by Raytheon, ITT Industries, General Dynamics, Undersea Sensor Systems, International Truck and Engine, and Northrop Grumman who joined with the Lilly Foundation to create an endowed faculty position and a Center of Excellence to initiate the systems engineering program. Additionally, in September, the Indiana Office of Energy and Defense Development released a draft “business plan” for increasing defense electronics business in the state of Indiana. This plan notes a need to “dramatically expand” systems engineering programs across the state and further observes that “this is a very high priority.” The proposed graduate-level certificate is a key element in meeting this critical state need.

X. List and indicate the resources required to implement the proposed program. Indicate sources (e.g., reallocations or any new resources such as personnel, library holdings, equipment, etc.).

The proposed graduate level certificate can be initiated with our current faculty. Library materials will be covered by those available to support the current systems engineering course work. Publicity costs also will be covered in tandem with the master’s degree. As stated in the M.S.E. proposal, additional faculty lines may be needed as enrollment in the master’s and certificate programs grow.

XI. Describe any innovative features of the program (e.g., involvement with local or regional agencies, or offices, cooperative efforts with other institutions, etc.).

The innovative feature of this program is the curriculum itself. It combines theory and practice that is currently not offered elsewhere in Northern Indiana. It is immediately applicable to local industrial practices and also provides a foundation for more specialized study for those interested in advanced work at the master’s degree level.
XII. Administration

A. Graduate School Administration Role

As specified, by the Graduate School, the following administrative processes will be followed:

1. The admission process shall generally parallel that for students seeking a graduate engineering degree at IPFW.

2. The Office of the Registrar will establish a special admission status for students enrolled in the certificate program.

3. When a student completes requirements for the certificate, the graduate program in the Department of Engineering will notify the Graduate School, which will then notify the Office of the Registrar.

4. The certificate will be posted separately upon completion of the requirements and recorded in the following manner:

 Graduate Certificate
 Field of Study: Engineering
 Specialization: Systems Engineering

 Credits earned toward a certificate will be included in the computation of the overall GPA posted on the transcript.

5. The Office of the Registrar will arrange for preparation of the certificate.

6. The certificates will be awarded at the usual times set for graduation.

7. The Department of Engineering will submit an annual report to the Graduate Council containing the following information:
 a. the number of students currently admitted to the certificate program
 b. for each admitted student:
 1) date admitted
 2) whether or not the student is also currently admitted to a degree program at Purdue, and if so, which degree
 3) number of credits completed toward fulfillment of certificate requirements
 c. number of certificates awarded annually.

B. Department of engineering Administration Role

1. At the end of each semester (including summer school), after the initial enrollment of the student in the certificate program, the student's record will be updated by the Department of Engineering to reflect courses completed toward certificate requirements. If the requirements are completed by the end of three years, then the student will be informed as will the Graduate School. If the student is not enrolled at IPFW at the time of completion, the student will be
enrolled "for degree only" and the student's mailing address for the certificate will be requested and sent along to the Graduate School which will forward it to the Office of the Registrar. If the requirements are not met by the end of four years, the student will be asked to verify any extenuating circumstances that may have caused the delay. If the circumstances are deemed to be credible, the student may be granted an extension of the initial time limit. However, if there are no extenuating circumstances or none that are deemed credible, then the student and the Graduate School will be informed of the student's dismissal from the Department of Engineering certificate program.

2. Upon notification by the Graduate School of the completion of the certificate requirements, the Office of the Registrar will provide the certificate to the student.
Appendix A Course Syllabi

SE510 Systems Engineering
Credits: 3

Systems Engineering (SE) is a structured approach to developing interdisciplinary and complex products. This course will introduce SE methodologies spanning the product development lifecycle from initial scope definition through delivery of the prototype or first production article. SE techniques are used to define and manage requirements, analyze and optimize product architectures, develop comprehensive designs, plan, supervise and carry out the system design and verification activities. SE also provides techniques for ensuring that system-level requirements (i.e., reliability, maintainability, safety, manufacturability, etc.) are incorporated into the final product. Spanning all these activities are a set of SE analysis and control functions that continuously assess and manage the product scope, quality, configuration, interfaces and performance.

Prerequisites: (If none, please explain reasons for absence)
Senior or Graduate standing

Course Outline:
Classes are 2.5 hours long and will be held once a week

<table>
<thead>
<tr>
<th>Day</th>
<th>Topic</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Systems Engineering Overview</td>
</tr>
<tr>
<td>2</td>
<td>Systems engineering Processes and Standards</td>
</tr>
<tr>
<td>3</td>
<td>Concept Development and System Scope</td>
</tr>
<tr>
<td>4</td>
<td>Requirements and Specifications</td>
</tr>
<tr>
<td>5</td>
<td>Functional Analysis and Allocation</td>
</tr>
<tr>
<td>6</td>
<td>System Trades / Exam 1</td>
</tr>
<tr>
<td>8</td>
<td>System Trades</td>
</tr>
<tr>
<td>9</td>
<td>Design Synthesis and System Architecture</td>
</tr>
<tr>
<td>10</td>
<td>System Analysis and Control</td>
</tr>
<tr>
<td>11</td>
<td>Configuration Management</td>
</tr>
<tr>
<td>12</td>
<td>Specialty Engineering 1</td>
</tr>
<tr>
<td>13</td>
<td>Verification and Validation 1/ Exam 2</td>
</tr>
<tr>
<td>14</td>
<td>Verification and Validation 2 and Planning</td>
</tr>
<tr>
<td>15</td>
<td>Putting it together: the B-2 Case Study</td>
</tr>
<tr>
<td>16</td>
<td>Final Exam</td>
</tr>
</tbody>
</table>

Method of Evaluation or Assessment:
30% Homework
20% First Exam
20% Second Exam
30% Final Exam

Course Outcomes

A student who successfully completes the course will have demonstrated:
1. An understanding of Systems Engineering processes and standards.
 (ABET codes: a, f, h, l, 7,9)
2. Familiarity with the project and product lifecycle.
 (ABET codes: a, c, f, h, l, 7, 9)
3. An ability to define scope with a work breakdown structure.
 (ABET codes: c, e, g, k, 3, 4, 8)
4. The capability to write requirements and specifications.
 (ABET codes: c, e, g, k, 3, 4, 8)
5. Techniques for performing functional analysis.
 (ABET codes: b, c, e, k, 2, 3, 4, 8)
6. The ability to develop and perform system trades.
 (ABET codes: b, c, e, k, 2, 3, 4)
7. The ability to construct and analyze a system architecture.
 (ABET codes: b, c, e, g, k, 2, 3, 4, 8)
8. Familiarity with configuration management processes.
 (ABET codes: a, c, k, l, 3, 4)
9. An understanding about how to design systems that are easy to manufacture and maintain as well as safe.
 (ABET codes: a, c, e, l, 3, 4, 9)
10. Knowledge of techniques for verifying a design and validating a product.
 (ABET codes: c, f, k, 3, 4, 7, 8)
11. An understanding of the types of plans needed in engineering a complex system.
 (ABET codes: c, e, g, 3, 4, 8, 9)

ABET Classification:

- Engineering Science: 50%
- Engineering Design: 50%

Reading List:

Readings will be assigned from:

2. *INCOSE Systems Engineering Handbook V2a*, June 1, 2004
8. B-2 Systems Engineering Case Study, John M. Griffin, James Kinnu and John, M. Colombi, Center for Systems Engineering, AFIT, Wright Patterson AFB, OG
SE520 Engineering Economics
Credits: 3
This course will provide an overview of financial accounting and economic principles employed by engineers involved in product and system development. It is intended to familiarize engineers with methods in project accounting, budgeting, cost estimation, financial management, design optimization and economics.

Prerequisites:
If none, please explain reasons for absence
Senior or Graduate standing

Course Outline:

<table>
<thead>
<tr>
<th>Day</th>
<th>Topic</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Course Intro and Objectives / Intro to Project Scope</td>
</tr>
<tr>
<td>2</td>
<td>WBS and Scope / Intro to Cost Accounting</td>
</tr>
<tr>
<td>3</td>
<td>Cost Allocation and Cost Pools</td>
</tr>
<tr>
<td>4</td>
<td>Project Accounting Structures and Reporting</td>
</tr>
<tr>
<td>5</td>
<td>Intro to Cost Estimation</td>
</tr>
<tr>
<td>6</td>
<td>Cost Estimation: Basis of Estimates</td>
</tr>
<tr>
<td>7</td>
<td>Integrating Project Schedule to Generate Budgets</td>
</tr>
<tr>
<td>8</td>
<td>Introduction to Risk Analysis</td>
</tr>
<tr>
<td>9</td>
<td>Assessing Risk</td>
</tr>
<tr>
<td>10</td>
<td>Quantifying Cost Risk and Risk Management</td>
</tr>
<tr>
<td>11</td>
<td>Decision Making</td>
</tr>
<tr>
<td>12</td>
<td>Trade Studies and Exam Review</td>
</tr>
<tr>
<td>13</td>
<td>1st Exam</td>
</tr>
<tr>
<td>14</td>
<td>Cost as an Independent Variable</td>
</tr>
<tr>
<td>15</td>
<td>Design to Cost</td>
</tr>
<tr>
<td>16</td>
<td>Cost Performance Systems - Introduction to EVMS</td>
</tr>
<tr>
<td>17</td>
<td>Earned Value Analysis</td>
</tr>
<tr>
<td>18</td>
<td>Estimating Cost at Completion (EAC)</td>
</tr>
<tr>
<td>19</td>
<td>Constructing a Project EVMS</td>
</tr>
<tr>
<td>20</td>
<td>Scoring Earned Value</td>
</tr>
<tr>
<td>21</td>
<td>Nunn-McCurdy and Re-baselining Budgets</td>
</tr>
<tr>
<td>22</td>
<td>Time-Value of Money</td>
</tr>
<tr>
<td>23</td>
<td>Interest and Rates of Return</td>
</tr>
<tr>
<td>24</td>
<td>Investment Strategies and Assessment</td>
</tr>
<tr>
<td>25</td>
<td>2nd Exam</td>
</tr>
<tr>
<td>26</td>
<td>Investment Strategies and Assessment 2</td>
</tr>
<tr>
<td>27</td>
<td>IRAD and Capital Budgeting</td>
</tr>
<tr>
<td>28</td>
<td>Corporate Financial Statements</td>
</tr>
<tr>
<td>29</td>
<td>Corporate Financial Statements 2 and Review</td>
</tr>
<tr>
<td>30</td>
<td>Final Exam</td>
</tr>
</tbody>
</table>

Method of Evaluation or Assessment:
30% Homework
20% First Exam
20% Second Exam
30% Final Exam
Course Outcomes

A student who successfully completes the course will have demonstrated:

1. Use of a work breakdown structure (WBS) to document project scope.
 (ABET codes: c, d, e, g, k, 2, 4, 5, 6, 7)
2. The ability to read and understand project financial reports.
 (ABET codes: d, k, 4, 5)
3. An understanding of techniques used to estimate project costs.
 (ABET codes: c, d, k, 2, 4, 5, 8)
4. Knowledge of criteria for developing basis of estimates for project costing.
 (ABET codes: c, d, f, k, 2, 4, 5, 7, 8)
5. Techniques for quantifying risk.
 (ABET codes: c, d, k, 2, 4, 5, 8)
6. Use of risk in determining cost reserves.
 (ABET codes: c, d, f, k, 2, 4, 5, 7, 8)
7. Use cost as a criteria in making design and development decisions.
 (ABET codes: b, c, d, e, k, 1, 2, 3, 4, 5, 7, 8)
8. Familiarity with EVMS metrics.
 (ABET codes: c, d, k, 2, 4, 5, 8)
9. An understanding of the time value of money.
 (ABET codes: c, d, k, 5, 8)
10. An ability to read and understand corporate financial reports.
 (ABET codes: e, h)

ABET Classification: Engineering Science: 80%
 Engineering Design: 20%

Reading List:

Modern Cost Management, 2nd Ed., 2000 (In paperback)
Jae K. Shin, Joel G. Siegel, Ph.D.
Barron's Educational Series, Inc.

Engineering Economics, Thirteenth Edition,
William Sullivan, Elin Wicks, James Lukhoj
ISBN 0-13-148649-7
Pearson Education, Inc., 2006

Risk Management Guide for DoD Acquisition, sixth edition (Version 1.0), Department of Defense
August 2006.(Available on-line)

Association (NDIA), Program Management Systems Committee (PMSC), ANSI/EIA-748-A, Jan

or

Earned Value Management Application Guide United Sates Department of Energy, Version 1.6,
SE530 Systems Engineering Management
Credits: 3

The systems engineering (SE) management team is responsible for planning and managing all systems engineering activities that are required to successfully develop complex products and systems. They are in charge of ensuring that all system elements are compatible, available on-schedule and on-budget, work together seamlessly, and satisfy customer requirements.

This course will address the role and activities of the systems engineering team in managing and coordinating product development. Topics will include systems engineering planning, management of scope, risk and cost, configuration, interfaces and human resources, project control, reviews, performance measures, standards and documentation.

Prerequisites: (If none, please explain reasons for absence)
1. Senior or graduate standing in either an engineering or science degree program, and
2. SE 510 Systems Engineering or Consent of the Instructor

Course Outline:

<table>
<thead>
<tr>
<th>Class</th>
<th>Topic</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Overview of Systems Engineering</td>
</tr>
<tr>
<td>2</td>
<td>Overview: SE Management and SE-CMM</td>
</tr>
<tr>
<td>3</td>
<td>Systems Engineering Plans (SEPs)</td>
</tr>
<tr>
<td>4</td>
<td>Concept Development and Scope</td>
</tr>
<tr>
<td>5</td>
<td>System Architecture and Design</td>
</tr>
<tr>
<td>6</td>
<td>Functional Analysis and Requirement Process</td>
</tr>
<tr>
<td>7</td>
<td>Specifications and Configuration Control</td>
</tr>
<tr>
<td>8</td>
<td>Make/Buy Decisions and Subcontracting</td>
</tr>
<tr>
<td>9</td>
<td>Specialty Engineering 1</td>
</tr>
<tr>
<td>10</td>
<td>Specialty Engineering 2</td>
</tr>
<tr>
<td>11</td>
<td>System Synthesis</td>
</tr>
<tr>
<td>12</td>
<td>Risk Management 1</td>
</tr>
<tr>
<td>13</td>
<td>Risk Management 2</td>
</tr>
<tr>
<td>14</td>
<td>Integration, Test and Evaluation / Exam Review</td>
</tr>
<tr>
<td>15</td>
<td>Exam #1</td>
</tr>
<tr>
<td>16</td>
<td>Manufacturing, Producibility, and Integrated Logistics</td>
</tr>
<tr>
<td>17</td>
<td>Engineering Change Control</td>
</tr>
<tr>
<td>18</td>
<td>Verification, Validation and Qualification</td>
</tr>
<tr>
<td>19</td>
<td>Project Organization</td>
</tr>
<tr>
<td>20</td>
<td>Human Resources</td>
</tr>
<tr>
<td>21</td>
<td>The Integrated Master Plan / Integrated Schedule</td>
</tr>
<tr>
<td>22</td>
<td>Systems engineering Planning/ Exam Review</td>
</tr>
<tr>
<td>23</td>
<td>Exam #2</td>
</tr>
<tr>
<td>24</td>
<td>SE Balance Functions</td>
</tr>
<tr>
<td>25</td>
<td>SE Documentation / Data Management</td>
</tr>
<tr>
<td>26</td>
<td>Engineering Reviews</td>
</tr>
<tr>
<td>27</td>
<td>Cost Estimation</td>
</tr>
<tr>
<td>28</td>
<td>CAIV / DTC</td>
</tr>
<tr>
<td>29</td>
<td>Earned Value 1</td>
</tr>
<tr>
<td>30</td>
<td>Earned Value 2 / Exam Review</td>
</tr>
<tr>
<td>31</td>
<td>Final Exam</td>
</tr>
</tbody>
</table>

Method of Evaluation or Assessment:
30% Homework
20% First Exam
20% Second Exam
30% Final Exam

Course Outcomes

A student who successfully completes the course will have demonstrated:

1. An understanding of role of the systems engineering team in product development
 (ABET codes: 2, 4, 5, 7, 8, 9, a, d, g, j, k)
2. Knowledge of systems engineering practice and its integration into the product development
 lifecycle.
 (ABET codes: 1, 2, 4, 5, 7, 8, 9, a, d, e, i, j, k)
3. An understanding of systems engineering balance functions that span the project lifecycle:
 management of scope, requirements, interfaces, configuration, risk, cost and data.
 (ABET codes: 1, 2, 4, 5, 7, 8, 9, a, c, d, i, j, k)
4. Techniques for planning the technical effort
 (ABET codes: 1, 2, 4, 7, 8, a, c, d, f, g, k)
5. The use of program phased gates and reviews to verify and validate progress
 (ABET codes: 4, 5, 7, 8, a, c, d, f, g, k)
6. Techniques for quantifying and reducing development risk.
 (ABET codes: 2, 4, 5, 8, c, d, e, k)
7. Ability to assess the advantages and challenges associated with the method for integrating
 engineering functions into companies and projects organizations
 (ABET codes: 5, d)
8. An understanding of techniques used to estimate project costs.
 (ABET codes: 2, 3, 4, 5, 7, c, d, f, k)
9. Techniques for managing cost during product development
 (ABET codes: 2, 3, 5, 7, 8, b, d, e, f, k)

ABET Classification:

Engineering Science: 60%
Engineering Design: 40%

Reading List:
Readings will also be assigned from

Available at: http://www.sei.cmu.edu/pub/documents/95reports/pdf/mm003_95.pdf

Available at:
http://oecm.energy.gov/admin/Portal/LinkClick.aspx?tabid=79&table=Announcements&field=ItemID&id=13&link=NDIIntentGuide.pdf
SE540 Systems Architecture
Credits: 3

Systems engineering best practices prescribe a set of methodologies for architecting and designing complex systems. This course will cover requirements analysis, functional analysis and allocation, and synthesis and their interaction with systems analysis and control functions including system trades, management of risk, configuration, interfaces and data, and development of performance measures. The lectures will be complemented by a class design project to architect a complex system leading to development of a functional and physical architecture and associated functional and allocated baselines.

Level of the Course:
Anticipated Percentage of Undergraduate Student Enrollment: 10%
Anticipated Percentage of Graduate Student Enrollment: 90%

Prerequisites: (If none, please explain reasons for absence)
SE510 Systems Engineering or equivalent

Course Outline:

Classes are 2.5 hours long and will be held once a week. The first half of each class will be theory and second half will be project engineering

<table>
<thead>
<tr>
<th>Day</th>
<th>Topic</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>The Art of Architecting / Project Introduction</td>
</tr>
<tr>
<td>2</td>
<td>Heuristics and Systems Engineering / Project Scope</td>
</tr>
<tr>
<td>3</td>
<td>Managing Uncertainties / Project Plans and Requirements</td>
</tr>
<tr>
<td>4</td>
<td>Manufacturing / Requirement Analysis</td>
</tr>
<tr>
<td>5</td>
<td>Social Systems / Interface Definitions</td>
</tr>
<tr>
<td>6</td>
<td>Software and Info. Technology / Functional Analysis 1</td>
</tr>
<tr>
<td>8</td>
<td>Collaborative Systems / Functional Analysis and Allocation 2</td>
</tr>
<tr>
<td>9</td>
<td>Mid Term Exam / Risk ID and Assessment</td>
</tr>
<tr>
<td>10</td>
<td>System Representation and Models / Performance Measures</td>
</tr>
<tr>
<td>11</td>
<td>Design Progression / Trade Studies 1</td>
</tr>
<tr>
<td>12</td>
<td>Integrated Modeling / Trade Studies 1 / Functional Architecture</td>
</tr>
<tr>
<td>13</td>
<td>Architectural Frameworks / Project Synthesis</td>
</tr>
<tr>
<td>14</td>
<td>Decision Making in the Real world / Project Synthesis</td>
</tr>
<tr>
<td>15</td>
<td>The System Architect / Project Summation</td>
</tr>
<tr>
<td>16</td>
<td>Final Exam</td>
</tr>
</tbody>
</table>

Method of Evaluation or Assessment:
25% Homework
25% Class Project
20% MidTerm
30% Final Exam
Course Outcomes

A student who successfully completes the course will have demonstrated:

1. An advanced capability to generate a work breakdown structure that defines scope
 (ABET codes: c, e, g, k, 3, 4, 5, 8)
2. A capability to work with stakeholders to identify, derive and allocate system requirements.
 (ABET codes: c, e, g, k, 3, 4, 5, 8)
3. An ability to generate comprehensive Interface Control Documents (ICDs)
 (ABET codes: b, c, e, g2, 3, 4, 5, 8)
4. The ability to apply functional analysis techniques to real world problems
 (ABET codes: b, c, e, k, 2, 3, 4, 8)
5. An understanding of how to design and perform complex system trades.
 (ABET codes: b, c, e, k, 2, 3, 4, 5)
6. The ability to construct both functional and physical architecture.
 (ABET codes: b, c, e, g, k, 2, 3, 4, 8)
7. An understanding of how to incorporate specialty engineering into system architectures
 (ABET codes: c, d, g, 2, 3, 4, 8)

ABET Classification: Engineering Science: 40%
Engineering Design: 60%

Reading List:

Textbook

Readings will also be assigned from:

2. INCOSE Systems Engineering Handbook V2a, June 1, 2004